C 独立样本均值差的检验统计量
前提假设:正态总体;方差齐性
记\(X_A\sim N(\mu_A,\sigma_A^2)\),\(X_B\sim N(\mu_B,\sigma_B^2)\)。由正态分布可加性可知:\(\overline{X_A}\sim N(\mu_A,\sigma_A^2⁄n_A)\),\(\overline{X_B}\sim N(\mu_B,\sigma_B^2⁄n_B )\),\(\overline{X_A}-\overline{X_B}\sim N(\mu_A-\mu_B,\sigma_A^2⁄n_A+\sigma_B^2⁄n_B)\)。
特别地,在原假设下,有:\(\overline{X_A}-\overline{X_B}\sim N(0,\sigma_A^2⁄n_A+\sigma_B^2⁄n_B)\),即:
\[\frac{\overline {X_A}-\overline {X_B}}{\sqrt{\sigma_A^2⁄n_A +\sigma_B^2⁄n_B }}\sim N(0,1)\]
若二总体满足:\(\sigma_A^2=\sigma_B^2=\sigma^2\),则
\[\frac{(n_A-1) S_A^2}{\sigma^2} \sim χ^2 (n_A-1),\frac{(n_B-1) S_B^2}{\sigma^2} \sim χ^2 (n_B-1)\]
由\(χ^2\)分布的可加性:
\[\frac{(n_A-1)S_A^2+(n_B-1)S_B^2}{\sigma^2} \sim χ^2 (n_A+n_B-2)\]
进而可以构造检验统计量:
\[T=\frac{\overline{X_A}-\overline{X_B}}{\sqrt{(\frac{1}{n_A}+\frac{1}{n_B})\times\frac{(n_A-1) S_A^2+(n_B-1)S_B^2)}{n_A+n_B-2}}}\sim t(n_A+n_B-2)\]